Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166116

RESUMO

Iron-sulfur clusters (FeS) are ancient and ubiquitous protein cofactors that play fundamental roles in many aspects of cell biology. These cofactors cannot be scavenged or trafficked within a cell and thus must be synthesized in any subcellular compartment where they are required. We examined the FeS synthesis proteins found in the relict plastid organelle, called the apicoplast, of the human malaria parasite Plasmodium falciparum. Using a chemical bypass method, we deleted four of the FeS pathway proteins involved in sulfur acquisition and cluster assembly and demonstrated that they are all essential for parasite survival. However, the effect that these deletions had on the apicoplast organelle differed. Deletion of the cysteine desulfurase SufS led to disruption of the apicoplast organelle and loss of the organellar genome, whereas the other deletions did not affect organelle maintenance. Ultimately, we discovered that the requirement of SufS for organelle maintenance is not driven by its role in FeS biosynthesis, but rather, by its function in generating sulfur for use by MnmA, a tRNA modifying enzyme that we localized to the apicoplast. Complementation of MnmA and SufS activity with a bacterial MnmA and its cognate cysteine desulfurase strongly suggests that the parasite SufS provides sulfur for both FeS biosynthesis and tRNA modification in the apicoplast. The dual role of parasite SufS is likely to be found in other plastid-containing organisms and highlights the central role of this enzyme in plastid biology.


Assuntos
Apicoplastos , Proteínas Ferro-Enxofre , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Apicoplastos/metabolismo , Enxofre/metabolismo , Ferro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo
2.
Elife ; 112022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35257658

RESUMO

Isopentenyl pyrophosphate (IPP) is an essential metabolic output of the apicoplast organelle in Plasmodium falciparum malaria parasites and is required for prenylation-dependent vesicular trafficking and other cellular processes. We have elucidated a critical and previously uncharacterized role for IPP in apicoplast biogenesis. Inhibiting IPP synthesis blocks apicoplast elongation and inheritance by daughter merozoites, and apicoplast biogenesis is rescued by exogenous IPP and polyprenols. Knockout of the only known isoprenoid-dependent apicoplast pathway, tRNA prenylation by MiaA, has no effect on blood-stage parasites and thus cannot explain apicoplast reliance on IPP. However, we have localized an annotated polyprenyl synthase (PPS) to the apicoplast. PPS knockdown is lethal to parasites, rescued by IPP and long- (C50) but not short-chain (≤C20) prenyl alcohols, and blocks apicoplast biogenesis, thus explaining apicoplast dependence on isoprenoid synthesis. We hypothesize that PPS synthesizes long-chain polyprenols critical for apicoplast membrane fluidity and biogenesis. This work critically expands the paradigm for isoprenoid utilization in malaria parasites and identifies a novel essential branch of apicoplast metabolism suitable for therapeutic targeting.


Assuntos
Apicoplastos , Malária Falciparum , Parasitos , Animais , Apicoplastos/genética , Apicoplastos/metabolismo , Malária Falciparum/parasitologia , Parasitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Poliprenois , Proteínas de Protozoários/metabolismo , Terpenos/metabolismo
3.
Malar J ; 20(1): 299, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215262

RESUMO

BACKGROUND: Cultured human red blood cells (RBCs) provide a powerful ex vivo assay platform to study blood-stage malaria infection and propagation. In recent years, high-resolution metabolomic methods have quantified hundreds of metabolites from parasite-infected RBC cultures under a variety of perturbations. In this context, the corresponding control samples of the uninfected culture systems can also be used to examine the effects of these perturbations on RBC metabolism itself and their dependence on blood donors (inter-study variations). METHODS: Time-course datasets from five independent studies were generated and analysed, maintaining uninfected RBCs (uRBC) at 2% haematocrit for 48 h under conditions originally designed for parasite cultures. Using identical experimental protocols, quadruplicate samples were collected at six time points, and global metabolomics were employed on the pellet fraction of the uRBC cultures. In total, ~ 500 metabolites were examined across each dataset to quantify inter-study variability in RBC metabolism, and metabolic network modelling augmented the analyses to characterize the metabolic state and fluxes of the RBCs. RESULTS: To minimize inter-study variations unrelated to RBC metabolism, an internal standard metabolite (phosphatidylethanolamine C18:0/20:4) was identified with minimal variation in abundance over time and across all the samples of each dataset to normalize the data. Although the bulk of the normalized data showed a high degree of inter-study consistency, changes and variations in metabolite levels from individual donors were noted. Thus, a total of 24 metabolites were associated with significant variation in the 48-h culture time window, with the largest variations involving metabolites in glycolysis and synthesis of glutathione. Metabolic network analysis was used to identify the production of superoxide radicals in cultured RBCs as countered by the activity of glutathione oxidoreductase and synthesis of reducing equivalents via the pentose phosphate pathway. Peptide degradation occurred at a rate that is comparable with central carbon fluxes, consistent with active degradation of methaemoglobin, processes also commonly associated with storage lesions in RBCs. CONCLUSIONS: The bulk of the data showed high inter-study consistency. The collected data, quantification of an expected abundance variation of RBC metabolites, and characterization of a subset of highly variable metabolites in the RBCs will help in identifying non-specific changes in metabolic abundances that may obscure accurate metabolomic profiling of Plasmodium falciparum and other blood-borne pathogens.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/sangue , Metaboloma , Plasmodium falciparum/metabolismo , Malária Falciparum/parasitologia , Metabolômica
4.
EMBO J ; 40(16): e107247, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34031901

RESUMO

Malaria parasites contain an essential organelle called the apicoplast that houses metabolic pathways for fatty acid, heme, isoprenoid, and iron-sulfur cluster synthesis. Surprisingly, malaria parasites can survive without the apicoplast as long as the isoprenoid precursor isopentenyl pyrophosphate (IPP) is supplemented in the growth medium, making it appear that isoprenoid synthesis is the only essential function of the organelle in blood-stage parasites. In the work described here, we localized an enzyme responsible for coenzyme A synthesis, DPCK, to the apicoplast, but we were unable to delete DPCK, even in the presence of IPP. However, once the endogenous DPCK was complemented with the E. coli DPCK (EcDPCK), we were successful in deleting it. We were then able to show that DPCK activity is required for parasite survival through knockdown of the complemented EcDPCK. Additionally, we showed that DPCK enzyme activity remains functional and essential within the vesicles present after apicoplast disruption. These results demonstrate that while the apicoplast of blood-stage P. falciparum parasites can be disrupted, the resulting vesicles remain biochemically active and are capable of fulfilling essential functions.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/metabolismo , Apicoplastos , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-33495219

RESUMO

The malaria parasite Plasmodium falciparum contains the apicoplast organelle that synthesizes isoprenoids, which are metabolites necessary for posttranslational modification of Plasmodium proteins. We used fosmidomycin, an antibiotic that inhibits isoprenoid biosynthesis, to identify mechanisms that underlie the development of the parasite's adaptation to the drug at sublethal concentrations. We first determined a concentration of fosmidomycin that reduced parasite growth by ∼50% over one intraerythrocytic developmental cycle (IDC). At this dose, we maintained synchronous parasite cultures for one full IDC and collected metabolomic and transcriptomic data at multiple time points to capture global and stage-specific alterations. We integrated the data with a genome-scale metabolic model of P. falciparum to characterize the metabolic adaptations of the parasite in response to fosmidomycin treatment. Our simulations showed that, in treated parasites, the synthesis of purine-based nucleotides increased, whereas the synthesis of phosphatidylcholine during the trophozoite and schizont stages decreased. Specifically, the increased polyamine synthesis led to increased nucleotide synthesis, while the reduced methyl-group cycling led to reduced phospholipid synthesis and methyltransferase activities. These results indicate that fosmidomycin-treated parasites compensate for the loss of prenylation modifications by directly altering processes that affect nucleotide synthesis and ribosomal biogenesis to control the rate of RNA translation during the IDC. This also suggests that combination therapies with antibiotics that target the compensatory response of the parasite, such as nucleotide synthesis or ribosomal biogenesis, may be more effective than treating the parasite with fosmidomycin alone.


Assuntos
Antimaláricos , Apicoplastos , Fosfomicina , Malária Falciparum , Antimaláricos/uso terapêutico , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética
6.
mBio ; 13(1): e0302321, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164549

RESUMO

Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form a redox system that is hypothesized to play a central role in the maintenance and function of the apicoplast organelle of malaria parasites. The Fd/FNR system provides reducing power to various iron-sulfur cluster (FeS)-dependent proteins in the apicoplast and is believed to help to maintain redox balance in the organelle. While the Fd/FNR system has been pursued as a target for antimalarial drug discovery, Fd, FNR, and the FeS proteins presumably reliant on their reducing power play an unknown role in parasite survival and apicoplast maintenance. To address these questions, we generated genetic deletions of these proteins in a parasite line containing an apicoplast bypass system. Through these deletions, we discovered that Fd, FNR, and certain FeS proteins are essential for parasite survival but found that none are required for apicoplast maintenance. Additionally, we addressed the question of how Fd and its downstream FeS proteins obtain FeS cofactors by deleting the FeS transfer proteins SufA and NfuApi. While individual deletions of these proteins revealed their dispensability, double deletion resulted in synthetic lethality, demonstrating a redundant role in providing FeS clusters to Fd and other essential FeS proteins. Our data support a model in which the reducing power from the Fd/FNR system to certain downstream FeS proteins is essential for the survival of blood-stage malaria parasites but not for organelle maintenance, while other FeS proteins are dispensable for this stage of parasite development. IMPORTANCE Ferredoxin (Fd) and ferredoxin-NADP+ reductase (FNR) form one of the few known redox systems in the apicoplast of malaria parasites and provide reducing power to iron-sulfur (FeS) cluster proteins within the organelle. While the Fd/FNR system has been explored as a drug target, the essentiality and roles of this system and the identity of its downstream FeS proteins have not been determined. To answer these questions, we generated deletions of these proteins in an apicoplast metabolic bypass line (PfMev) and determined the minimal set of proteins required for parasite survival. Moving upstream of this pathway, we also generated individual and dual deletions of the two FeS transfer proteins that deliver FeS clusters to Fd and downstream FeS proteins. We found that both transfer proteins are dispensable, but double deletion displayed a synthetic lethal phenotype, demonstrating their functional redundancy. These findings provide important insights into apicoplast biochemistry and drug development.


Assuntos
Apicoplastos , Parasitos , Animais , Ferredoxinas/metabolismo , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Apicoplastos/metabolismo , NADP/metabolismo , Proteínas/metabolismo , Ferredoxina-NADP Redutase
7.
Elife ; 92020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32815516

RESUMO

The apicoplast of Plasmodium falciparum parasites is believed to rely on the import of three-carbon phosphate compounds for use in organelle anabolic pathways, in addition to the generation of energy and reducing power within the organelle. We generated a series of genetic deletions in an apicoplast metabolic bypass line to determine which genes involved in apicoplast carbon metabolism are required for blood-stage parasite survival and organelle maintenance. We found that pyruvate kinase II (PyrKII) is essential for organelle maintenance, but that production of pyruvate by PyrKII is not responsible for this phenomenon. Enzymatic characterization of PyrKII revealed activity against all NDPs and dNDPs tested, suggesting that it may be capable of generating a broad range of nucleotide triphosphates. Conditional mislocalization of PyrKII resulted in decreased transcript levels within the apicoplast that preceded organelle disruption, suggesting that PyrKII is required for organelle maintenance due to its role in nucleotide triphosphate generation.


Assuntos
Apicoplastos/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Piruvato Quinase/metabolismo , Plasmodium falciparum/genética
8.
Malar J ; 19(1): 94, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32103749

RESUMO

BACKGROUND: Human blood cells (erythrocytes) serve as hosts for the malaria parasite Plasmodium falciparum during its 48-h intraerythrocytic developmental cycle (IDC). Established in vitro protocols allow for the study of host-parasite interactions during this phase and, in particular, high-resolution metabolomics can provide a window into host-parasite interactions that support parasite development. METHODS: Uninfected and parasite-infected erythrocyte cultures were maintained at 2% haematocrit for the duration of the IDC, while parasitaemia was maintained at 7% in the infected cultures. The parasite-infected cultures were synchronized to obtain stage-dependent information of parasite development during the IDC. Samples were collected in quadruplicate at six time points from the uninfected and parasite-infected cultures and global metabolomics was used to analyse cell fractions of these cultures. RESULTS: In uninfected and parasite-infected cultures during the IDC, 501 intracellular metabolites, including 223 lipid metabolites, were successfully quantified. Of these, 19 distinct metabolites were present only in the parasite-infected culture, 10 of which increased to twofold in abundance during the IDC. This work quantified approximately five times the metabolites measured in previous studies of similar research scope, which allowed for more detailed analyses. Enrichment in lipid metabolism pathways exhibited a time-dependent association with different classes of lipids during the IDC. Specifically, enrichment occurred in sphingolipids at the earlier stages, and subsequently in lysophospholipid and phospholipid metabolites at the intermediate and end stages of the IDC, respectively. In addition, there was an accumulation of 18-, 20-, and 22-carbon polyunsaturated fatty acids, which produce eicosanoids and promote gametocytogenesis in infected erythrocyte cultures. CONCLUSIONS: The current study revealed a number of heretofore unidentified metabolic components of the host-parasite system, which the parasite may exploit in a time-dependent manner to grow over the course of its development in the blood stage. Notably, the analyses identified components, such as precursors of immunomodulatory molecules, stage-dependent lipid dynamics, and metabolites, unique to parasite-infected cultures. These conclusions are reinforced by the metabolic alterations that were characterized during the IDC, which were in close agreement with those known from previous studies of blood-stage infection.


Assuntos
Eritrócitos/metabolismo , Malária Falciparum/metabolismo , Parasitemia/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Parasitemia/parasitologia
9.
PLoS Pathog ; 16(2): e1008316, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059044

RESUMO

Malaria parasites rely on a plastid organelle for survival during the blood stages of infection. However, the entire organelle is dispensable as long as the isoprenoid precursor, isopentenyl pyrophosphate (IPP), is supplemented in the culture medium. We engineered parasites to produce isoprenoid precursors from a mevalonate-dependent pathway, creating a parasite line that replicates normally after the loss of the apicoplast organelle. We show that carbon-labeled mevalonate is specifically incorporated into isoprenoid products, opening new avenues for researching this essential class of metabolites in malaria parasites. We also show that essential apicoplast proteins, such as the enzyme target of the drug fosmidomycin, can be deleted in this mevalonate bypass parasite line, providing a new method to determine the roles of other important apicoplast-resident proteins. Several antibacterial drugs kill malaria parasites by targeting basic processes, such as transcription, in the organelle. We used metabolomic and transcriptomic methods to characterize parasite metabolism after azithromycin treatment triggered loss of the apicoplast and found that parasite metabolism and the production of apicoplast proteins is largely unaltered. These results provide insight into the effects of apicoplast-disrupting drugs, several of which have been used to treat malaria infections in humans. Overall, the mevalonate bypass system provides a way to probe essential aspects of apicoplast biology and study the effects of drugs that target apicoplast processes.


Assuntos
Hemiterpenos/metabolismo , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo , Plasmodium falciparum/metabolismo , Animais , Antibacterianos/farmacologia , Apicoplastos/genética , Apicoplastos/fisiologia , Azitromicina/metabolismo , Fosfomicina/análogos & derivados , Fosfomicina/farmacologia , Humanos , Malária/metabolismo , Malária/parasitologia , Parasitos/metabolismo , Plastídeos/parasitologia , Proteínas de Protozoários/metabolismo
10.
Mol Microbiol ; 106(3): 439-451, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28836704

RESUMO

Lipoate is an essential cofactor for enzymes that are important for central metabolism and other processes. In malaria parasites, scavenged lipoate from the human host is required for survival. The Plasmodium falciparum mitochondrion contains two enzymes (PfLipL1 and PfLipL2) that are responsible for activating mitochondrial proteins through the covalent attachment of lipoate (lipoylation). Lipoylation occurs via a novel redox-gated mechanism that remains poorly understood. We show that PfLipL1 functions as a redox switch that determines which downstream proteins will be activated. Based on the lipoate redox state, PfLipL1 either functions as a canonical lipoate ligase or as a lipoate activating enzyme which works in conjunction with PfLipL2. We demonstrate that PfLipL2 is a lipoyltransferase and is a member of a novel clade of lipoate attachment enzymes. We show that a LipL2 enzyme from Chlamydia trachomatis has similar activity, demonstrating conservation between intracellular pathogens from different phylogenetic kingdoms and supporting the hypothesis that an early ancestor of malaria parasites once contained a chlamydial endosymbiont. Redox-dependent lipoylation may regulate processes such as central metabolism and oxidative defense pathways.


Assuntos
Lipoilação/genética , Lipoilação/fisiologia , Chlamydia/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Nucleotidiltransferases , Oxirredução , Peptídeo Sintases/genética , Plasmodium/metabolismo , Plasmodium falciparum/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...